Search results for "polymeric nanoparticle"

showing 10 items of 21 documents

Hemoglobin loaded polymeric nanoparticles: preparation and characterizations.

2011

In the present work polymeric nanoparticles based on Poly (maleic anhydride-alt-butyl vinyl ether) 5% grafted with m-PEG (2000) and 95% grafted with 2-methoxyethanol (VAM41-PEG) were loaded with human hemoglobin (Hb) and characterized from a physicochemical point of view. The assessment of structural and functional features of the loaded Hb was performed and the effect of the introduction of different reducing agents as aimed at minimizing Hb oxidation during the nanoparticles formulation process, was also investigated. Nanoparticles possessing an average diameter of 138 ± 10 nm and physicochemical features suitable for this kind of application were successfully obtained. Although the oxida…

Biocompatible polymerVinyl CompoundsInjectable systemsBiocompatibilityReducing agentPharmaceutical ScienceNanoparticleBiocompatible MaterialsPolymeric nanoparticlePolyethylene Glycolschemistry.chemical_compoundHemoglobinsBlood SubstitutesPolymer chemistrymedicineHumansMicroparticleParticle SizeMaleic AnhydridesDrug CarriersBlood substituteMaleic anhydrideVinyl etherSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)chemistryChemical engineeringNanoparticlesEthylene GlycolsDrug carrierEthylene glycolmedicine.drugEthersEuropean journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences
researchProduct

Polymeric Nanoparticles: Polymeric Nanoparticles with Neglectable Protein Corona (Small 18/2020)

2020

BiomaterialsMaterials scienceChemical engineeringAsymmetrical Flow Field-Flow FractionationDrug deliveryGeneral Materials ScienceProtein CoronaGeneral ChemistryPolymeric nanoparticlesBiotechnologySmall
researchProduct

Rapamycin-Loaded Polymeric Nanoparticles as an Advanced Formulation for Macrophage Targeting in Atherosclerosis

2021

Recently, rapamycin (Rapa) represents a potential drug treatment to induce regression of atherosclerotic plaques

DrugBiodistributionmedia_common.quotation_subjectPharmaceutical ScienceExcipientNanoparticlelcsh:RS1-44102 engineering and technologyPharmaceutical formulationArticlelcsh:Pharmacy and materia medica03 medical and health scienceschemistry.chemical_compoundPhosphatidylcholinemedicine030304 developmental biologymedia_commonKOdia-PC0303 health sciencesrapamycin (Rapa)technology industry and agriculture021001 nanoscience & nanotechnologyIn vitromacrophage targetingpolymeric nanoparticleschemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoPolycaprolactoneBiophysicsatherosclerosis0210 nano-technologymedicine.drugPharmaceutics
researchProduct

Polyaspartamide-g-Polylactide graft cpolymers able to form nanoparticles obtained by a novel synthetic strategy.

2009

GRAFT COPOLYMERS POLYMERIC NANOPARTICLES POLY(LACTIC ACID)Settore CHIM/09 - Farmaceutico Tecnologico Applicativo
researchProduct

Polyaspartamide-based nanoparticles loaded with fluticasone propionate and the in vitro evaluation towards cigarette smoke effects

2017

This paper describes the evaluation of polymeric nanoparticles (NPs) as a potential carrier for lung administration of fluticasone propionate (FP). The chosen polymeric material to produce NPs was a copolymer based on α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide (PHEA) whose backbone was derivatised with different molecules, such as poly(lactic acid) (PLA) and polyethylenglycol (PEG). The chosen method to produce NPs from PHEA-PLA-PEG2000 was the method based on high-pressure homogenization and subsequent solvent evaporation by adding Pluronic F68 during the process and trehalose before lyophilisation. Obtained colloidal FP-loaded NPs showed a slightly negative surface charge and nanometric d…

Materials scienceFluticasone propionate (FP)General Chemical EngineeringNanoparticle02 engineering and technologyPolymeric nanoparticle010402 general chemistry01 natural sciencesαβ-poly-(N-2-hydroxyethyl)-DL-aspartamide (PHEA)Articlealpha beta-poly-(N-2-hydroxyethyl)-D L-aspartamide (PHEA)">dPoly(lactic acid) (PLA)lcsh:ChemistryColloidchemistry.chemical_compoundPEG ratioCopolymer?Organic chemistryGeneral Materials ScienceSurface charge?-poly-(N-2-hydroxyethyl)-dαβ-poly-(N-2-hydroxyethyl)-technology industry and agriculture">l-aspartamide (PHEA)Poly(ethylene glycol) (PEG)respiratory system021001 nanoscience & nanotechnologyTrehaloseIn vitro0104 chemical sciencesLactic acidαβ-poly-(<i>N</i>-2-hydroxyethyl)-<span style="font-variant: small-caps;">d</span><span style="font-variant: small-caps;">l</span>-aspartamide (PHEA); poly(lactic acid) (PLA); poly(ethylene glycol) (PEG); polymeric nanoparticles; fluticasone propionate (FP)polymeric nanoparticleschemistrylcsh:QD1-999l-aspartamide (PHEA); poly(lactic acid) (PLA); poly(ethylene glycol) (PEG); polymeric nanoparticles; fluticasone propionate (FP)0210 nano-technologyNuclear chemistry
researchProduct

A NANOPARTICULATE DRUG-DELIVERY SYSTEM FOR RIVASTIGMINE: PHYSICO-CHEMICAL AND IN VITRO BIOLOGICAL CHARACTERIZATION

2007

The preparation and characterization of surface-PE Gylated polymeric nanoparticles are described. These systems were obtained by UV irradiation of PHM and PHM-PEG(2000) as an inverse microemulsion, using an aqueous solution of the PHM/PHM-PEG(2000) copolymer mixture as the internal phase and triacetin saturated with water as the external phase, and characterized by dimensional analysis, zeta-potential measurements and XPS. in vitro biological tests demonstrated their cell compatibility and their ability to escape from phagocytosis. Rivastigmine was encapsulated into the nanoparticle structure and drug-release profiles from loaded samples were investigated in PBS at pH = 7.4 and human plasma.

Molecular StructureCell SurvivalUltraviolet RaysPhenylcarbamatesRivastigmineHemolysisPolyethylene GlycolsPOLYMERIC NANOPARTICLES RIVASTIGMINE DRUG DELIVERYDrug Delivery SystemsPolymethacrylic AcidsSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoCell Line TumorDelayed-Action PreparationsHumansNanoparticlesPeptidesTriacetin
researchProduct

Margination of Fluorescent Polylactic Acid-Polyaspartamide based Nanoparticles in Microcapillaries In Vitro: the Effect of Hematocrit and Pressure.

2017

The last decade has seen the emergence of vascular-targeted drug delivery systems as a promising approach for the treatment of many diseases, such as cardiovascular diseases and cancer. In this field, one of the major challenges is carrier margination propensity (i.e., particle migration from blood flow to vessel walls); indeed, binding of these particles to targeted cells and tissues is only possible if there is direct carrier–wall interaction. Here, a microfluidic system mimicking the hydrodynamic conditions of human microcirculation in vitro is used to investigate the effect of red blood cells (RBCs) on a carrier margination in relation to RBC concentration (hematocrit) and pressure drop…

Pharmaceutical ScienceNanoparticle02 engineering and technologyPolymeric nanoparticleHematocrit01 natural sciencesAnalytical Chemistrychemistry.chemical_compoundDrug Delivery SystemsPolylactic acidDrug Discoveryαβ-poly-(N-2-hydroxyethyl)-dl-aspartamide (PHEA)medicine.diagnostic_testMolecular StructureChemistry">l-aspartamide (PHEA)poly(ethylene glycol) (PEG)Microfluidic Analytical Techniques021001 nanoscience & nanotechnologypolymeric nanoparticlesBiochemistryHematocritmarginationChemistry (miscellaneous)Drug deliveryMolecular Medicine0210 nano-technologyDrug carrier">PolyestersIn Vitro Techniquesα β-poly-(N-2-hydroxyethyl)-D010402 general chemistryFluorescenceArticleMicrocirculationαβ-poly-(N-2-hydroxyethyl)-<span style="font-variant: small-caps;">d</span><span style="font-variant: small-caps;"></span><span style="font-variant: small-caps;">l</span>-aspartamide (PHEA); poly(lactic acid) (PLA); poly(ethylene glycol) (PEG); polymeric nanoparticles; marginationlcsh:QD241-441Rhodaminelcsh:Organic chemistrypoly(lactic acid) (PLA)PEG ratiomedicineHumansPhysical and Theoretical ChemistryParticle Sizeα β-poly-(N-2-hydroxyethyl)-DL-aspartamide (PHEA)αβ-poly-(N-2-hydroxyethyl)-RhodaminesMicrocirculationOrganic Chemistry0104 chemical sciencesBiophysicsNanoparticles">dPeptidesMolecules (Basel, Switzerland)
researchProduct

Polymeric nanoparticles as a new generation of anti-oxidant carriers

2016

In recent years, polymeric nanoparticles have been the object of growing scientific interest, especially as drug carriers. In this work, PEO-PPO-PEO (F127, commercial Pluronic F127®) nanoparticles has been used as carriers for naturally occurring anti-oxidant, such as quercetin (Q).

Polymeric nanoparticles anti-oxidant nanocarriers
researchProduct

Composite nanoparticles based on hyaluronic acid chemically cross-linked with alpha,beta-polyaspartylhydrazide.

2007

In this paper, new composite nanoparticles based on hyaluronic acid (HA) chemically cross-linked with alpha,beta polyaspartylhydrazide (PAHy) were prepared by the use of a reversed-phase microemulsion technique. HA-PAHy nanoparticles were characterized by FT-IR spectroscopy, confirming the occurrence of the chemical cross-linking, dimensional analysis, and transmission electron micrography, showing a sub-micrometer size and spherical shape. Zeta potential measurements demonstrated the presence of HA on the nanoparticle surface. A remarkable affinity of the obtained nanoparticles toward aqueous media that simulate some biological fluids was found. Stability studies showed the absence of chem…

Polymers and PlasticsBiocompatibilityCell SurvivalNanoparticleBioengineeringAntineoplastic AgentsPolymeric nanoparticles hyaluronic acid polyaminoacidBiomaterialschemistry.chemical_compoundDrug Delivery SystemsMicroscopy Electron TransmissionPolymer chemistryHyaluronic acidSpectroscopy Fourier Transform InfraredMaterials ChemistryZeta potentialHumansMicroemulsionHyaluronic AcidParticle SizeChemical decompositionChemistryHydrolysisEquipment DesignNylonsCross-Linking ReagentsHydrazinesChemical engineeringNanoparticlesFluorouracilDrug carrierK562 CellsNanogelBiomacromolecules
researchProduct

PEGYLATED POLYASPARTAMIDE–POLYLACTIDE BASED NANOPARTICLES PENETRATING CYSTIC FIBROSIS ARTIFICIAL MUCUS

2016

Here, the preparation of mucus-penetrating nanoparticles for pulmonary administration of ibuprofen in patients with cystic fibrosis is described. A fluorescent derivative of α,β-poly(N-2-hydroxyethyl)-D,L-aspartamide is synthesized by derivatization with rhodamine, polylactide, and poly(ethylene glycol), to obtain polyaspartamide− polylactide derivatives with different degrees of pegylation. Starting from these copolymers, fluorescent nanoparticles with different poly(ethylene glycol) content, empty and loaded with ibuprofen, showed spherical shape, colloidal size, slightly negative ζ potential, and biocompatibility toward human bronchial epithelial cells. The high surface poly(ethylene gly…

Polymers and PlasticsBiocompatibilityPolyestersαL-aspartamideNanoparticleBioengineeringIbuprofen02 engineering and technologyRespiratory Mucosa010402 general chemistry01 natural sciencesCell LinePolyethylene GlycolsBiomaterialsRhodaminecystic fibrosischemistry.chemical_compoundpolymeric nanoparticles cystic fibrosis αβ-poly(N-2-hydroxyethyl)-DL-aspartamideMaterials ChemistryCopolymerOrganic chemistryHumansDerivatizationβ-poly(N-2-hydroxyethyl)-Dpolymeric nanoparticles; cystic fibrosis; α; β-poly(N-2-hydroxyethyl)-D; L-aspartamide021001 nanoscience & nanotechnologyMucus0104 chemical sciencesMucuspolymeric nanoparticleschemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoPEGylationNanoparticles0210 nano-technologyPeptidesEthylene glycolNuclear chemistry
researchProduct